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Abstract

The “Collective Intelligence” (COIN) framework concerns
the design of collectives of reinforcement-learning agents
such that their interaction causes a provided “world” utility
function concerning the entire collective to be maximized.
Previously, we applied that framework to scenarios involv-
ing Markovian dynamics where no re-evolution of the sys-
tem from counter-factual initial conditions (an often expen-
sive calculation) is permitted. This approach sets the indi-
vidual utility function of each agent to be both aligned with
the world utility, and at the same time, easy for the associ-
ated agents to optimize. Here we extend that approach to sys-
tems involving non-Markovian dynamics. In computer simu-
lations, we compare our techniques with each other and with
conventional “team games” We show whereas in team games
performance often degrades badly with time, it steadily im-
proves when our techniques are used. We also investigate
situations where the system’s dimensionality is effectively re-
duced. We show that this leads to difficulties in the agents’
ability to learn. The implication is that “learning” is a prop-
erty only of high-enough dimensional systems.

Introduction
In this paper we are concerned with large distributed col-
lectives of interacting goal-driven computational processes,
where there is a provided ‘world utility’ function that rates
the possible behaviors of that collective (Wolpert, Tumer,
& Frank 1999; Wolpert & Tumer 1999). We are particu-
larly concerned with such collectives where the individual
computational processes use machine learning techniques
(e.g., Reinforcement Learning (RL) (Kaelbing, Littman, &
Moore 1996; Sutton & Barto 1998; Sutton 1988; Watkins &
Dayan 1992)) to try to achieve their individual goals. We
represent those goals of the individual processes as maxi-
mizing an associated ‘payoff’ utility function, one that in
general can differ from the world utility.

In such a system, we are confronted with the following in-
verse problem: How should one initialize/update the payoff
utility functions of the individual processes so that the ensu-
ing behavior of the entire collective achieves large values of
the provided world utility? In particular, since in truly large
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systems detailed modeling of the system is usually impossi-
ble, how can we avoid such modeling? Can we instead lever-
age the simple assumption that our learnering algorithms are
individually fairly good at what they do to achieve a large
world utility value?

We are concerned with payoff utility functions that are
“aligned” with the world utility, in that modifications a
player might make that would improve its payoff utility also
must improve world utility.1 Fortunately the equivalence
class of such payoff utilities extends well beyond team-game
utilities. In particular, in previous work we used the COllec-
tive INtelligence (COIN) framework to derive the ‘Wonder-
ful Life Utility’ (WLU) payoff function (Wolpert & Tumer
1999) as an alternative to a team-game payoff utility. The
WLU is aligned with world utility, as desired. In addi-
tion though, WLU overcomes much of the signal-to-noise
problem of team game utilities (Tumer & Wolpert 2000;
Wolpert, Tumer, & Frank 1999; Wolpert & Tumer 1999;
Wolpert, Wheeler, & Tumer 2000).

In a recent paper, we extended the COIN framework with
an approach based on Transforming Arguments of Utility
functions (TAU) before the evaluation of those functions
(Wolpert & Lawson 2002). The TAU process was originally
designed to be applied to the individual utility functions of
the agents in systems in which the world utility depends
on the final state in an episode, where the variables outside
the collective undergo Markovian dynamics, with the update
rule of those variables reflecting the state of the agents at the
beginning of the episode. This is a very common scenario,
obtaining whenever the agents in the collective act as control
signals perturbing the evolution of a Markovian system.

In the pre-TAU version of the COIN framework, to
achieve good signal-to-noise requires knowing the evolution
operator. It also might require re-evolving the system from
counter-factual initial states of the agents to evaluate each
agent’s reward for a particular episode. This can be compu-
tationally expensive. With TAU utility functions no such re-
evolving is needed; the observed history of the system in the
episode is transformed in a relatively cheap calculation, and
then the utility function is evaluated with that transformed

1Such alignment can be viewed as an extension of the concept
of incentive compatibility in mechanism design (Fudenberg & Ti-
role 1991) to non-human agents, off-equilibrium behavior, etc.



history rather than the actual one.
The TAU process has other advantages that apply even in

scenarios not involving Markovian dynamics. In particular it
allows us to employ the COIN framework even when not all
arguments of the original utility function are observable, due
for example to communication limitations. In addition, cer-
tain types of TAU transformations result in utility functions
that are not exactly aligned with the world utility, but have
so much better signal-to-noise that the collective performs
better when agents use those transformed utility functions
than it does with exactly aligned utility functions.

Here we investigate the extension of the TAU process
to systems with non-Markovian dynamics where the world
utility is the same function of the state of the system at every
moment in time. To do this we have the agents operate on
very fast time-scales compared to that dynamics, i.e., have
the time-steps at which they make their successive moves be
very closely packed. We also have the moves of the agents
consist of very small perturbations to the underlying vari-
ables of the system rather than the direct setting of those
variables. Now since the world utility is defined for every
moment in time, there is a surface taking the values of those
underlying variables at any time-step to the associated value
of the world utility. So the problem for the agents is one of
traversing that surface to try to get to values of the underly-
ing variables to have a good associated world utility.

Since the time-scales are so small though, we can approx-
imate the effects of the agents’ moves at any time-step on the
value of the world utility at the next time-step as though the
intervening evolution were linear (Markovian). Now, as in
the original TAU work, assume for simplicity that that linear
dynamics is known for each such time-step. Then at each
time-step the problem is reduced to the exact same one that
was addressed in that original TAU work.

Unlike in that original work though, here the linear rela-
tion between the moves of the agents and the resultant value
of the world utility at the next time-step changes from one
time-step to the next, as both the underlying variables of the
system change as does the associated gradient. Accordingly,
the mapping the agents are trying to learn from their moves
to the resultant rewards changes in time.

Here we do not confront this nonstationarity. We use a set
of computer experiments to compare use of the TAU process
to set the utility functions of agents to the alternative con-
ventional approach of “team games” in this non-Markovian
domain. We verify that the TAU process outperforms this al-
ternative. In particular, in many experiments the team game
resulted in world utility values that

�����������
	��
with time, i.e.,

the agents steer the underlying variables to worse and worse
values. In contrast, the TAU process steers the underlying
variables in a way that improved world utility with time.

We also investigate what happens as the underlying sys-
tem is modified so that the moves of the individual agents
become less and less consequential to the dynamics. Intu-
itively, one would expect in such a case that the system’s
effective dimensionality gets reduced, while the agents also
have a harder time learning. We present tentative evidence
corroborating this prediction. The implication is that “learn-
ing” is a property only of high-enough dimensional systems.

The Mathematics of Collective Intelligence
We view the individual agents in the collective as players in-
volved in a repeated game.2 Let � with elements � be the
space of possible joint moves of all players in the collec-
tive in some stage. We wish to search for the � that maxi-
mizes a provided world utility ������ . In addition to  we
are concerned with utility functions

����� � , one such function
for each variable/player � . We use the notation � � to refer to
all players other than � .

Intelligence and the central equation
We wish to “standardize” utility functions so that the nu-
meric value they assign to a � only reflects their ranking of� relative to certain other elements of � . We call such a
standardization of an arbitrary utility � for player � the “in-
telligence for � at � with respect to � ”. Here we will use
intelligences that are equivalent to percentiles:

��� ��������� � ! ��"$#�% & ����'(�*)�+ �������-,.�/�0�1'2�4365 (1)

where the Heaviside function ) is defined to equal 1 when
its argument is greater than or equal to 0, and to equal 0 oth-
erwise, and where the subscript on the (normalized) measure��"

indicates it is restricted to � ' sharing the same non- � com-
ponents as � . In general, the measure must reflect the type
of system at hand, e.g., whether � is countable or not, and if
not, what coordinate system is being used. Other than that,
any convenient choice of measure may be used and the the-
orems will still hold. Intelligence value are always between
0 and 1.

Our uncertainty concerning the behavior of the system is
reflected in a probability distribution over � . Our ability
to control the system consists of setting the value of some
characteristic of the collective, e.g., setting the functions of
the players. Indicating that value by

	
, our analysis revolves

around the following central equation for 7��8:9 	 � , which
follows from Bayes’ theorem:

7���;9 	 � < ! �>=�@? 7��8;9 =�@? 5 	 �! �>=�*A 7�� =� ? 9 =�BA 5 	 �C7�� =�*A 9 	 �D5 (2)

where
=� A �;� � A &BE �0�F�G�IH��J5 � A &LK �0�F�G��MN�J5NO�ONO � is the vector of

the intelligences of the players with respect to their associ-
ated functions, and

=� ? �P� � ? �0�Q��� H ��5 � ? �0����� M ��5�O�ONOR� is the
vector of the intelligences of the players with respect to  .

Note that �*A & �0�S�T�
�U<WV means that player � is fully
rational at � , in that its move maximizes its utility, given
the moves of the players. In other words, a point � where� A & ���X�Y���Z<[V for all players � is one that meets the def-
inition of a game-theory Nash equilibrium (Fudenberg &
Tirole 1991). Note that consideration of points � at which

2The full mathematics of the COIN framework, however, ex-
tends significantly beyond what is needed to address such games.
See (Wolpert & Tumer 2001).



not all intelligences equal 1 provides the basis for a model-
independent formalization of bounded rationality game the-
ory, a formalization that contains variants of many of the the-
orems of conventional full-rationality game theory (Wolpert
2001a). On the other hand, a � at which all components of=�@? < V is a local maximum of  (or more precisely, a criti-
cal point of the ������ surface).

If we can choose
	

so that the third conditional probability
in the integrand is peaked around vectors

=� A all of whose
components are close to 1, then we have likely induced large
intelligences. If in addition the second term is peaked about=�@? equal to

=� A , then
=�@? will also be large. Finally, if the

first term is peaked about high  when
=�J? is large, then our

choice of
	

will likely result in high  , as desired.
Intuitively, the requirement that the utility functions have

high “signal-to-noise” (an issue not considered in conven-
tional work in mechanism design) arises in the third term.
It is in the second term that the requirement that the util-
ity functions be “aligned with  ” arises. In this work we
concentrate on these two terms, and show how to simultane-
ously set them to have the desired form.

Details of the stochastic environment in which the collec-
tive operates, together with details of the learning algorithms
of the players, are reflected in the distribution 7������ which
underlies the distributions appearing in Equation 2. Note
though that independent of these considerations, our desired
form for the second term in Equation 2 is assured if we have
chosen utility utilities such that

=� A equals
=�J? exactly for all� . We call such a system

� �I������� ���
. In game-theory lan-

guage, the Nash equilibria of a factored collective are local
maxima of  . In addition to this desirable equilibrium be-
havior, factored collectives automatically provide appropri-
ate off-equilibrium incentives to the players (an issue rarely
considered in game theory / mechanism design).

Opacity
We now focus on algorithms based on utility functions

�N� � �
that optimize the signal/noise ratio reflected in the third
term, subject to the requirement that the system be factored.
To understand how these algorithms work, given a measure��" ��� � � , define the opacity at � of utility � as:

� � �0�/�1�>5 	 � � ! � � '�� ��� ' 91��� 9 ������� ,.����� ' � � 5@�
� ��9

9 ������� ,.����� � � 5@� '� ��9 5 (3)

where � is defined in terms of the underlying probability dis-
tributions,3 and ��� '� � 5*� � � is defined as the worldline whose � �
components are the same as those of � ' while its � compo-
nents are the same as those of � ((Wolpert & Tumer 2001)).

The denominator absolute value in the integrand in Equa-
tion 3 reflects how sensitive �/����� is to changing � � . In

3Writing it out in full, 	�
������������	�
��������������� � �� !�#"�$%
���&��'� � �� !� , with:

	�
� � ��� � ��� � ���� (��� $%
���%���'� � �� !�)$%
���� �����'�� !��*+
���� �, - (4)

$%
� �� ��� � � � �� !�)$%
���%�(� �� �� (��*�
�����, .

contrast, the numerator absolute value reflects how sensitive�/����� is to changing � � � . So the smaller the opacity of a util-
ity function

� �
, the more

� � ����� depends only on the move of
player � , i.e., the better the associated signal-to-noise ratio
for � . Intuitively then, lower opacity should mean it is easier
for � to achieve a large value of its intelligence.

To formally establish this, we use the same measure
��"

to define opacity as the one that defined intelligence. Under
this choice expected opacity bounds how close to 1 expected
intelligence can be (Wolpert & Tumer 2001):/ � ��� �����1��� 9 	 �10 V ,32 5547698(:;8

2<0 / � � � ���/��� 5 	 � 9 	 ��= (5)

So low expected opacity of utility
���

ensure that a necessary
condition is met for the third term in Equation 2 to have the
desired form for player � . While low opacity is not, formally
speaking, also sufficient for

/ � ��� ���F����� 9 	 � to be close to
1, in practice the bounds in Equation 5 are usually tight.

Difference Utilities
It is possible to solve for the set of all utilities that are fac-
tored with respect to a particular world utility. Unfortu-
nately, in general it is not possible for a collective both to
be factored and to have zero opacity for all of its players.
However consider difference utilities, which are of the form

�/����� < ��0��� ,3> � � �����C� (6)

where > � � � is independent of � � . Any difference utility
is factored (Wolpert 2001b), and under benign approxima-
tions,

/ � �7? 9 	 � is minimized over the set of such utilities
by choosing

> � � �����C� < / �8 9�� � � 5 	 �D5 (7)

up to an overall additive constant. We call the resultant dif-
ference utility the Aristocrat utility (AU), loosely reflecting
the fact that it measures the difference between a player’s
actual action and the average action.

Review of the COIN Framework for Systems
with Markovian Evolution

We consider games which consist of multi-step “episodes”.
Within each episode the entire system evolves in a Marko-
vian manner from the initial moves of the players. We are
interested in such games where some of the players � are not
agents whose initial state is under control of a learning algo-
rithm that we control, but rather constitute an “environment”
for those controllable agents (i.e., where some of the players
correspond to the state of nature).

Let @ be the Markovian single step evolution operator of
the entire system through an episode,=��A <B@ =��A)C$H (8)

Each component � �A , for example, could be a one-
dimensional real number. The row vector @

�
would then

be � ’s update rule. Alternatively, each agent could be repre-
sented by one of D symbolic values. In that case,

=� A would
be given in a unary representation as a vector in EGFIH

&
H (i.e.



a Haar basis). Considering such large spaces are necessary
to describe arbitrary, nonlinear dynamics as Markovian evo-
lution. Here we will concentrate on the former case, where
the moves of the players are all real numbers.

The full multiple time step evolution of an episode is
given by single step operator in the usual way: Let

� <
������
�
@
@ M
@��
=
=
@��

�
					
�

where � is the number of time steps per episode. This opera-
tor applied to our initial state

=�� yields the entire “worldline”=� , or time history, of the system.=� < � =�  = (9)

We consider difference utility functions of the form��� � =��� < �� � =�  � ,3> � ��� � � =�  � (10)

where  is the world utility function to be optimized. We
will choose � � so that the product � � � =�  is independent of
agent � ’s actions. This is a necessary and sufficient condi-
tion for the associated difference utility

��� � =��� to be factored
with respect to the world utility  for any and all choices
of > � . In general, > � can be chosen in such a way to op-
timize learnability. Here though, for simplicity, we choose
> � <  . Accordingly, application of the � � operator is an
instance of transforming the argument of the (second term of
the) utility functions of the agents, i.e., it is a TAU process.

Observability restrictions
In practice, the full worldline of the system may not be fully
observable to each agent. Such limited observability of a
particular component may be determined by the problem. In
other cases, due to communication constraints each agent is
only allowed to observe a certain number of components,
and must select which such components to observe, for ex-
ample to optimize some auxiliary quantity like opacity. Sim-
ilarly, the dynamics may not be known exactly to the agent;
some rows of

�
may be uncertain to an agent, or simply

cannot be determined. In these kinds of situations the
���

de-
scribed above cannot be evaluated at the end of an episode
by agent � , even if the value �� =��A is globally broadcast to all
agents.

The TAU approach outlined above is well-suited to ad-
dress such situations. Formally, a decimated identity oper-
ator � can be defined whose diagonal elements are

��� 5NV �
depending on whether or not they are observable. The cor-
responding factored utility for agent � is��� � =��AL� < �� =��AC� , ������ � =��AC��5 (11)

where in general � may vary with � . Given global broadcast
to all agents of the value of �� =��AC� , for each agent to evaluate
this type of

���
only requires that those components of � � =��A

that are non-zero (and therefore can vary) after application
of the � operator be observed.

This difference utility has two main sources of noise, one
from potentially poor choice of the clamping operator, and
the other from the use of � in the second (subtracted) term
but not in the first. To address that latter source of noise we
can impose limited observability on the first term in addition
to the second one, getting��� � =��AC� < ���� =��AL� , ������ � =��A �!= (12)

The new utility is not factored with respect to  . Ac-
cording to the central equation however, it may still result in
better performance than when we don’t have � in the first
term, if the improvement in opacity more than offsets the
loss of exact factoredness. In addition to the potential for
such far superior opacity, this utility has the added advan-
tage that now we don’t even need to rely on global broadcast
of ���� =��AC� to evaluate

���
.

The non-Markovian case
To address the general nonlinear problem, we assign each
agent a real-valued number

� �
. The state of the system

=� A
is the Cartesian product of each agent’s action and

=� A . Each
agent can choose among three actions which add one of the
values

����� 5 � � to
� �

. Nonlinear evolution then occurs to=�
, to produce the value at the end of this episode,

=��A��6H <=� AJ� =��AL� . That value then serves as the argument of  .
Construction of factored utilities��� � =��A��6HN� < �� =� A�� =��AC�C� , �� =� AJ� �� � =��AC�B� (13)

requires that
=� A@� =��AC� be independent of � ’s choice of action.

One way to accomplish this to clamp (apply �� � ) to
=��A and

re-evolve the system. To avoid re-evolving the system, we
approximate

=� A@� �� � =��AL� with a Taylor Series expansion about
the unclamped

=��A starting state:=� A � �� � =� A � < =� A � =� A ��� � � =� A , �� � =� A � O =� A =� A � =� A �!= (14)

Assuming not all components of
=� A equal 0, we can recast

this as as the multiplication of a matrix times
=��A , where that

matrix is indexed by time. In doing this we reduce the sys-
tem to the linear case, only with a time-dependent update
matrix.

Note that varying
�

provides us a small parameter to con-
trol the expansion. It should also be noted that while this
method requires that

=� A � =��� be differentiable, the world util-
ity  need not be. See also (Wolpert & Lawson 2002).

Experiments
Numerical simulations were performed with 50 agents. Af-
ter an initial 100-episode training period, agents selected ini-
tial actions in each subsequent episode with the same re-
inforcement learning algorithm used in our previous work.
All players experienced a quadratic/nonlinear update rule=� � =�  � <! #"�$ % � "�$ % � " � % that depends on agents’ “position”



� � " � . The coefficients are randomly generated. The world
utility function was a spin glass,

 � < �
"�� % � " % � "� � %� = (15)

The agents are given a random initial starting point with, V�� � � � V . Because
=�

is quadratic, �� =��A*� is a quartic
polynomial in D dimensions. Since the coefficients

� � "�$ % �
have random signs, the function  has as many increasing
directions as it decreasing directions. The goal of the system
is to traverse this high dimensional surface, find an increas-
ing direction, and then follow that direction out to infinity.

We collected statistics by averaging runs over many ran-
domly set coefficients

� "�$ % and coupling constants � " % . These
runs were for systems whose first ���	� and 
���� components
at the end of the episode are observable, given some canoni-
cal ordering of agents. We examined (Figure 1) world utility
value vs. episode number for six utility functions:

1) TAU
�

for a fully observable system;
2) TAU

�
for 75 % observability,

������
;

3) The modification
� ������� giving a non-factored system,

again with 75 % observability;
4)
� M ��� for a factored system with 25 % observability;

5)
� M ������ for a non-factored system with 25 % observabil-

ity;
6) The team game, where every

� � <  .
Even the results for limited observability clearly outper-

form the corresponding team game in which there is full
observability. Furthermore, for 
���� observability, the non-
factored utilities ( � in both terms) consistently outperform
their factored counterpart. In these runs factoredness fell to
approximately � � � . The improvement in performance due
to better signal-to-noise more than outweighs the degrada-
tion due to loss in factoredness.
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Figure 1: System performance for D <�� � agents using
the Taylor Series method. The dynamics is governed by
a quadratic function of the agents’ “positions”. The world
utility  is a quartic in D dimensions. (upper two graphs
are

�
and

� ������� ; middle two are
� M ������ and

� ����
; lower two

are
� M ��� and a team game  .) The initial training period is

not shown.

It is interesting to adjust the ratio of
�

signs in the co-
efficients of the polynomials. If we introduce, for example,
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Figure 2: Taylor Series method where the quadratic coeffi-
cients have more , than � signs. (graphs: upper pair are

�
and

� ������� ; middle three are
������

,
� M ��� , and the team game;

lower is
� M ������ .) In this case, three of the limited observabil-

ity utilities and the team game perform worse over time (i.e.
their world utilities decrease).
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Figure 3:

more negative coefficients than positive, we expect the sur-
face to preferentially turn down. The task for the agents
becomes more challenging. We find (Figure 2), in fact,
that three of the limited observability utilities perform worse
over time (i.e. their world utility decreases). The team game
also performs worse over time. In fact, not only does the
team game give poor performance, but it fails altogether.
The lowest noise � @ � utilities

�
and

� ������� still give robust
performance.

In this case, the team game gives worse performance than
a random walk i.e. no learning is happening. In fact, the
system executes essentially determistic, nonlinear behav-
ior (Figure 3). Remarkably, as we increase the data aging
parmeter (weighting more heavily data that appeared further
in the past), the system becomes even more exotic, closely
resembling a low-dimensional nonlinear system. By aging
the data more severely, we effectively damp out a large por-
tion of the degrees of freedom stored in the agents’ train-
ing sets, hence the lower dimensionality. Learning, it would
seem, is possible only in higher-dimensional systems.



Conclusion
We present a detailed extension of the

����� D framework to
systems that undergo non-Markovian evolution. This builds
on previous work where the Markovian case (Wolpert &
Lawson 2002) was considered. The approach is applied
to systems with nonlinear update rules using a perturbative
technique. Results from numerical simulations find consis-
tent, robust improvement of performance as compared to the
conventional team game.

This framework naturally includes the case of limited ob-
servability. We found that even COIN-based utility func-
tions constrained by limited observability often outper-
formed team game utilities having full observability. We
also found a new class of nonfactored utilities that consis-
tently outperformed their factored counterpart, due to im-
proved signal-to-noise characteristics.

We find that the system’s performance can depend on the
characteristics of the surface being optimized. We show that
in some situations a team game will fail altogether (i.e. its
performance will degrade over time) while the correspond-
ing � @ � utility continues to perform well. In this ”non-
learning regime”, the system executes interesting determin-
istic, nonlinear behavior, indicative of low-dimensional sys-
tems.
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